串并联电池组在使用过程中出现的电池单体过充电、过放电、超温和过流问题,致使成组电池使用寿命大幅缩短甚至发生燃烧、爆炸等恶性事故,成组动力锂电池使用寿命缩短、安全性下降已经成为制约其推广应用和产业发展的关键。电池筛选工艺和电池管理系统是提高串并联电池组性能的关键。
串联电池组中由于单体电池容量、初始SOC、内阻、极化的不一致性,在充放电过程中需要电池管理系统检测单体电池电压与充放电设备通信以防部分单体电池的过充或过放,串联电池组在良好的电池管理条件下,使用过程中避免滥用如大电流倍率、环境温度过高等,串联电池组不会因为连接成组而造成快于单体电池的寿命衰退,但是部分电池性能的短板效应会减小串联电池组的容量利用率,可以通过带均衡功能的电池管理系统提高。
并联电池组中由于支路电流受到支路电池参数耦合影响,成组后支路电池容量、初始SOC内阻和极化的差异会造成支路电流工况的差异,大多数单体并联的支路电池参数虽然较为一致,整个充放电过程的平均电流倍率与并联电池组的外施电流倍率差异不大,但是在充放电的电池电压平台的两端SOC区间形成的电流差异较大。另外一个显著的影响因素就是并联电池组由于实际工况中存在动态电流工况(加速、制动以及怠速过程)产生了电流的环流,环流同样是充放电也一定程度的损伤了电池组寿命。
先串后并的电池拓扑结构有利于对系统各个单体电池进行检测和管理。先串后并的连接方式中并联支路的串联电池数目越多整条支路电池参数如内阻、极化更接近统一批次电池参数平均值的整数倍,并联支路的容量差异和初始SOC差异成为导致并联电流不平衡的主要因素。同一批次电池参数正态分布在先串后并的各个支路当中,显著降低了整个串并联电池组的电流不平衡程度。
不过参考相关电动汽车电池组成组方式的文献,从电池组连接的可靠性及电池电压不一致性发展趋势和电池组性能影响的角度分析,先并联后串联连接方式好于先串后并的连接方式。其中,在系统连接可靠性方面,先并后串高于单体电池,而先串后并可靠性低于单体电池;在电池电压不一致性方面,先并后串的成组方式电压分布较集中,没有电压过低的电池出现,而采用先串后并的成组方式的电池组电压普遍低,电压分布区间大。
以上可以看出,先串后并与先并后串各有其优缺点,在不同的应用条件下宜根据使用情况、电池系统容量、充放电工况等,选择合适的成组方式。